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Abstract 

The NASA Deep Space Network is unique among space  communication 
systems. The antennas and signal  processing  devices must  be individually 
configured  and  calibrated before each  spacecraft  tracking or commanding 
activity. T h s  preparation  requires  hundreds of keystrokes  as operators issue 
directives to the receivers,  transmitters, and other devices.  Like  all computer 
keyboard  activities, t h s  is error  prone compared to an automated function, 
described  here, that reduces both labor  required and clerical  errors.  We  place a 
special  focus on difficult  areas that required  intensive  engmeering effort. 
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Introduction 

The NASA Deep Space Network, or DSN, is an international  network of 
spacecraft  tracking  stations. The stations  are  located at  Goldstone, California, 
Madrid,  Spain, and Canberra,  Australia.  Regardless of the location of a 
spacecraft in the sky, one or more of the DSN’s antennas can observe it. Each 
of the antennas is  precisely  steered to remain pointed at  the spacecraft as the 
earth  rotates. The network supports two-way communication with 
interplanetary  space  missions and some Earth-orbiting missions,  including 
emergency support of the Space  Shuttle. The  Jet Propulsion Laboratory 
manages and operates the network for NASA from a central  operations  center 
in Pasadena,  California. 

The DSN is unique among space  communication  systems in that  it is  link 
configurable. T h s  means that for each  pass  of a spacecraft, a unique  collection 
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of antennas, receivers, transmitters, and other signal processing devices can be 
assigned to support trackmg. It is ths  capablltty to “mix and match” that 
creates the need for a high  level of human effort by the station operators. The 
level of effort required, of course, vanes widely  with the type  of  activity. 
Staffing,  however, is driven by the activity  peaks that occur at launches, 
planetary encounters, and  landings. To reduce these costs and improve 
efficiency, the Jet Propulsion Laboratory began  exploring  means for 
automating routine and repetitive  activities  in the late 1980’s. 

Initial efforts were  based on software macros. These collected  sets of directives 
or commands and executed them as a script. This approach has three 
sigtllficant h t a t ions :  1) the inabhty  to explicitly  specify  all  possible outcomes, 
2) a lack of visibihty into system status if the macro fails whde  processing’,  and 
3) a lack of flexibillty in extracting  data and using it  to populate variables. To 
overcome these h t a t ions ,  we began to explore a  more  sophsticated 
approach. 

The next step in implementation was to develop a representation of the human 
operator’s  knowledge and actions that could be used by a computer, and then 
to acquire that knowledge. A successful prototype led to approval for full-scale 
implementation. Performance, however, was  marginal, for reasons that d be 
discussed later. A second effort resulted in a fully functional system. The 
following sections will describe the development of the knowledge 
representation, knowledge ensneering, software implementation, and 
operational use of this approach to DSN automation. 

Knowledge Representation 

To fractionate monitor and control activities, four scenarios for routine pre- 
and post-track operations were developed. These are: 

Trackmg - Measures the angular position and velocity of the spacecraft. 

Trackmg and Telemetry - Adds  one-way down-link communication from the 
spacecraft. 

Trackmg,  Telemetry,  and Command - Adds up-link communication with the 
spacecraft. 

Cooper, Lynn P., “Operations Automation Using Temporal Dependency Networks,” 
Proceedings of the Technology 2001 Conference, San Jose, CA, December  3-5,1991. 
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Trackmg,  Telemetry, Command, and Rangmg - Adds measurement of the 
distance of the spacecraft from earth. 

For any of these four scenarios, the actual equipment used, both hardware  and 
software, may  vary  greatly depending upon the spacecraft and antenna 
involved. Our implementation takes considerable pains to hde   t h s  fact from 
the operator. The automation assembly presents generic  activities  using  generic 
equipment. These generic  activities are represented, both  graphcally and 
conceptually by temporal dependency networks (TDNs). 

A TDN is a directed  acyclic graph containing the temporal and behavioral 
knowledge  required to perform  a specific  task. A sample TDN is illustrated in 
Figure 1. Each arc withn the graph represents a precedence relationshp. Each 
node represents a discrete  task or event that must be performed or deliberately 
omitted (granted an exception by the human operator) before the graph can be 
further traversed. To further explore TDNs as a knowledge representation 
technology we must examine the contents of the nodes, whch are  called blocks 
in ths  application. 

Blocks consist of a related set of directives  and conditions, as the fundamental 
element of control in the  DSN. A directive is analogous to a command in 
UNIX or DOS. It is a sequence of characters terminated by a carriage return. 
Human operators, working at computer consoles, issue  directives and receive 
confirmation of their execution. The confirmation may be  a direct response by 
the receiving  system, a text message, or a change  in a data  field  displayed on 
the console. T h s  combination of directive-response is known as positive 
closed loop control. Some of the equipment does not have  this feature, a fact 
that adds to the challenge of automation. In general, when positive  closed loop 
control is  laclung, the automation must be interrupted and a manual operation 
is performed to confirm execution of the directive. 
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Figure 1. Temporal Dependency Network 

A block  consists of sets of directives that, together, perform a discrete  task. 
This task may require one or more devices to be controlled and to interact. 
The names  of the blocks indicate their purpose. Typical  block  names  include:' 

Configure  Receiver 
Move Antenna to  Point 
Stow Antenna 

Along  with  directives, the blocks contain pre-conditions, which are  entry 
criteria that must be satisfied before the block  can be executed, and post- 
conditions, whch are exit  criteria  for the blocks. 

To describe the monitor and control of the DSN at an abstract level, the 
activities are divided into pre-track,  track,  and post-track phases. Pre-track, 
typically the most labor intensive, includes  allocation, configuration, and 
calibration of equipment and movement of the antenna to point at the 
spacecraft's position. When the radio  link  with the spacecraft is acquired,  track 
phase begins.  Whde pre-track activities  may  take 30-60 minutes, track phase 
may last for hours, and even tens  of hours. If all goes  well,  this phase consists 

2 Note that whde the block names imply interaction with a single device, in fact,  several 
devices  may interact with a given  block. 
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of merely monitoring data  flows. Nevertheless, if problems occur or 
sophisticated activities  are  scheduled,  thls phase may contain the most complex 
human-computer interactions. The post-track phase begins when the 
spacecraft goes down over the horizon and communication is lost. The 
operator then returns the equipment to  the available pool and returns the 
antenna to its  stowed position. 

Knowledge  Engineering 

Knowledge engineering is the process of capturing human  expertise and 
transferring it into a form that is usable by a computer program. On  ths  
project, t h s  consisted  of  interviews with operations personnel and with the 
engmeers that built the various  devices of the DSN.  The knowledge  they 
supplied  helped  develop the TDNs and the information contained in the 
individual  blocks.  Finally, programmers convert the information into code. 

Several  challenges  were encountered during the knowledge  engmeering. The 
first was identification of the appropriate knowledge  sources. No unified  data 
source listed the names of the engineers who b d t  the devices. In some cases, 
the  person had left the Laboratory and maintenance had been handed off to  a 
person who lacked in-depth understanding. 

After the experts were identified, extracting the knowledge provided additional 
challenges. Often the engmeers responsible for the devices, and the operators 
who used them daily, disagreed on the proper operational procedures. 
Differences also  existed between individual  operator’s views of the devices. 
Attempts to resolve the differences with  serial  meetings  were  unsuccessful.  We 
found it more effective to bring all the parties into  a meeting and distill a 
consensus. It was  extremely  helpful to have a senior moderator present at 
these discussions. 

In some instances,  issues  could  only be resolved by “touching the elephant.” 
Because the nearest  tracking station is a three hour drive from  the Laboratory, 
much of it on two-lane desert roads, we encountered significant logstic 
difficulties. 
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Three  Key  Challenges 

Three characteristics of the DSN make automation particularly  challengmg. 
The first is the need to configure the equipment string for each  spacecraft pass, 
as described above. Another is the lack  of pre-automation preparation. 

In the classical approach to process automation, a prerequisite step is pre- 
automation, in whlch the process is completely debugged and the workspace 
made as  easy  as possible for the human operator. Only then is automation 
applied to the problem. Financial  and  technical considerations prevented this 
prerequisite step from occurring.  Much of the DSN’s equipment is a diverse 
collection of agmg, custom-bdt  device^.^ E h n a t i o n  of equipment would 
mean  loss of valuable  science  data  as  they  are s d l  used to communicate with 
older spacecraft.  Replacement  would be prohlbitively  expensive. The result is 
that we worked  with  systems that were not, strictly  speakmg,  ready for 
automated control. 

A third complication came from the requirement that the tracking station 
operator must be able to modify the automated monitor and control software 
at  any time during around-the-clock operation. Thls requirement is driven by 
the exigencies of the DSN. The unique demands of monitor and control of 
planetary spacecraft imply frequent last-minute changes and work-arounds. 
Thus the logic of the automation may need modification when software 
professionals are not available. A sigmficant part of the logc must be coded in 
a scripting language to permit local,  real-time modifications. Other key 
information is kept in tables that can be modified  with a text editor. 

Preliminary  Implementation 

After the successfid prototype, an operational implementation was created as a 
part of an upgrade to the monitor and control workstation. Unfortunately, 
performance of the TDN automation portion of the system was  margmal  and 
it was never  used for tracking  spacecraft. As discussed above, the blocks  were 
written in a scripting language to facllltate  rapid  change  by persons who are not 
professional programmers. 

Schonberger, Richard J., and Edward M. Knod, Operations Management, 5th edition, Irwin, 

Some of the computers are over 15 years old, while some mechanical  devices  are 30 years 
Burr hdge, IL, pp. 79-80. 

old. 
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The first implementation used a  product called  BasicScript5  as the scripting 
engme. T h s  was a poor choice for this application, but that was not evident 
untd implementation was  nearly complete. Each of the approximately 36 
scripts  resided in a separate frle on disk. The language  requires that the entire 
application program must reside  in a single  frle. This meant that repetitive 
functionality  encapsulated  in a subroutine needed an instance for each  script. 
This created  severe configuration management problems. In addition, the 
programmers pushed the edge of the performance envelope.  Some  features of 
the language, such as h u t s  on the number of  variables and the lack of a 
function primitive made the implementation difficult. 

Nevertheless, in budding thls version, the developers learned a great  deal about 
the actual requirements and potential design  difficulties in the application 
domain. The frrst version of the TDN Engme became the classic “throw  one 
away” described by  Brooks.‘ 

Final  Implementation 

In the second and final implementation, tool command language: or Tcl, is the 
scripting language. The source code for the Tcl interpreter is  freely  available, so 
we  were  able to extend the language to meet our needs.  Several constructs 
were added. The resulting  language is known as the automation language for 
managmg operations or &MO. Although ALMO is a superset of Tcl, the 
extensions permit the scripts to be written in a syntax that is  very close to the 
macro language  used  in the previous monitor and control system. T h s  makes 
it easier for trackmg station operators to assist in script writing and 
maintenance. 

Software  Architecture 

The software collectively known as the Automation Assembly  consists of three 
processes. These are the TDN Engine, the Block Engine, and the Block 
Manager. The software architecture is dustrated in Figures 2 and 3. The  TDN 
Engine controls execution of the TDN and is controlled by the monitor and 
control workstation. The Block Engine, which  is controlled by the TDN 
Engme, interprets the ALMO, and interacts with the various 

Basic Script is a product of Summit Software, Jamesvdle, NY. 
Brooks, Frederick P., The  MythicalMan-Month, Addson-Wesley, Reading,  MA, 1975, p. 116. 
Osterhout, John K., Tcl and  the Tk Toolkit, Addison-Wesley,  Reading, MA, 1994. 
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telecommunications  systems. The Block  Manager  aids  in control of the 
multiple  versions of TDN blocks and  in  selection of the appropriate block for 
each  trackmg instance. The functions of the blocks  are further explained in the 
next section whlch contains a narrative of the automated trackmg  activity. 

Spacecraft  Tracking Events 

Shortly before a monitor and control workstation is scheduled to perform a 
track, all necessary data is downloaded to the workstation. Thls includes the 
identity  of the spacecraft to  be tracked, the designated antenna, and 
information known  as the sequence of events (SOE). The SOE contains the 
what, when, and how of each tracking  activity. It specifies the equipment to be 
used, the time  and point of spacecraft rise  and set, and parameters needed for 
equipment calibration. In addition, it specifies the version of the device 
controller software to be used. 

All of the signal processing devices in the DSN are computer controlled. This 
permits use  of different software versions to achleve different technical 
objectives  withm the same  hardware.  Changing the version of software 
invoked  provides the  option, for example,  of  using any one of several  versions 
of a transmitter for a gven trackmg  activity. The flexibdity inherent in thls 
technique creates an additional challenge for the Automation Assembly. 

The  TDNs are written at an abstract level for generic  devices and do  not have 
awareness of the multiple versions that exist  in  practice. Therefore, the 
Automation Assembly  requires the intelhgence to select the proper version of 
the signal  processing  device. The Assembly  uses an internal table to select the 
correct versions of the device  controller’s software. 

After determining the appropriate block and versions, the TDN Engine uses a 
library function to call the Block  Manager. The Block  Manager responds with 
the files containing the blocks. The  TDN Engme creates an instance of the 
Block Engine for each  block. These processes load the block file into memory 
and notify the TDN engne when complete. The selected TDN is now ready 
for execution. A window showing all  key parameters is  displayed to  the human 
operator for approval. When approved, the TDN may be executed. 

The operator clicks the Jtart block and each  of the initial  blocks (those with 
Jtart as their  predecessor)  begm execution. If the block completes successfully, 
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the successor  block  is started. Note that multiple  blocks may  have a single 
predecessor. T h s  provides opportunities for parallelism. If a problem occurs 
during block  execution, the operator is prompted to intervene. He or she may 
correct the problem and restart the block, choose to continue in spite of the 
problem, or abort the block. When the terminal  block end is reached, the 
activity is completed. The operator can now resume manual control or start 
another TDN . 

Conclusion 

Although the DSN provided unique  challenges, p r e h n a r y  reports indicate 
that the effort is successful. The Automation Assembly  is now in the final 
stages  of  testing.  Results indicate that time to conduct pre-track  activities  is 
reduced by 50% or more. In  one test, an operator was  able to manage two 
spacecraft at the same  time, something that is not possible without automation. 
Nevertheless, automation is not  a substitute for an  experienced DSN operator. 
When serious  anomalies occur, the expertise of the human is needed to correct 
the problem or devise a work around. 
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8 Note that blocks can also  be executed in a standalone mode,  independent of TDNs. 
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